

Enabler for Next-Generation Mobile Video Applications

Dr. Qi Wang

In collaboration with **Dr. James Nightingale** & **Prof. Christos Grecos**, Audio-visual Communications & Networks Centre (AVCN), UWS

Dr. Sergio Goma, Multimedia R&D, Qualcomm, USA

High Efficiency Video Coding (HEVC)

Latest video coding standard
ITU-T H.265/ ISO/IEC 23008-2 (2013)
MPEG-H Part 2 (2013)

Requires up to 50% less bandwidth than current H.264/AVC (MPEG 4) standard without any loss of video quality

□ H.265/HEVC video networking is in very early R&D stage

Project Aims

Investigate enabling techniques for H.265/HEVC applications in challenging mobile environments.

Concurrent multipath streaming

- □ Scalable HEVC streaming
- □ Quality of experience (QoE) driven HEVC streaming

WP1. HEVStream

Tool to aid HEVC video network research on physical test beds
Facilitates study of HEVC streaming in impaired networks

□ Features:

- □ Trace driven, Linux, C++ and Python
- □ Encapsulation, scheduling and transmission
- □ Single path or concurrent multipath streaming
- □ Analysis tools (network/QoS and video)

HEVStream

HEVStream

□ Sender

- □ Modified HEVC Encoder
 - Generates trace files
 - □ Interfaces with modules for calculation of NAL unit priorities (*Option*)
- **Custom bitstream extraction tool (select NAL units from list)**
 - □ Sort encoded bitstream by priority (selectable window size) (*Option*)
- **RTP** packetiser (uses proposed IETF payload format)
- □ Scheduling agent
 - □ Select path(s) based on current network conditions
 - Distribute application flow over multiple paths
 - Drop non-viable packets

- **Receiver**
 - □ Trace file generation
 - □ Sub-flow aggregator (multi-path transmission)
 - **Out of sequence buffer management**
 - NAL unit loss and delay analyser

□ Modified HEVC Decoder

- □ Reference picture set reconstruction (in presence of loss)
- Basic (Frame copy or block copy) error concealment
- □ Trace file generation

Multihomed

HEVStream (Concurrent Multipath)

Wobile Netw

pplicatior

Node (MNN)

Flow (A)

WP2. Scalable HEVC (SHVC)

□ Scalable extension to HEVC (still under development)

□ HEVC already has TEMPORAL scalability built-in

□ SHVC adds SPATIAL and QUALITY scalable dimensions

Provides ability to adapt streams to device constraints and prevailing network conditions

Temporal Scaling in SHVC

Spatial Scaling in SHVC

2X Mode

3.0

1.5Y

Base Layer

Quality Scaling in SHVC

Base Layer QP =37

Enhancement Layer 1 QP =32

Enhancement Layer 2 QP =27

Scalable HEVC (SHVC)

□ HEVStream updated to include SHVC

- □ Priority weight module to use scalable layer ID)
- □ SHVC scheduler
- □ SHVC dependency checker

□ 'As displayed' video quality comparison in dynamic spatial adaptation

Comparing SHVC to HEVC and H.264/SVC

- Quality based SHVC adaptation can reduce bandwidth by 27% for a PSNR loss of only 0.5dB
- SHVC adaptation gives better results than packet prioritising HEVC scheme by up to 6dB of PSNR
- □ SHVC better than H.264/SVC by up to 18dB in aggressive adaptation scenarios.

WP3. Subjective Evaluation of HEVC

□ Significantly higher compression ratio than previous codecs

□ Each network packet carries larger portion of picture

□ Will the loss of a packet have a greater impact ?

□ Subjective evaluation – indicator of QoE

□ 16 subjects (small sample as initial pilot study)

 \Box Age 22 – 50, both sexes

PhD students & University employees (admin staff)

Double stimulus impairment scale (DSIS) method used

□ Testing station followed BT.500 guidelines

□ (larger, comprehensive study using 50 participants in February 2014)

Encoding

6 sequences - (*Racehorses, Flowervase, Blowingbubbles, Basketballpass, Basketballdrilltext, Keiba*)

2 spatial resolutions (416*240 and 832*480)

3 target bitrates (500Kbps, 1400Kbps and 2200Kbps)

HEVC reference software HM 8 used

QP chosen to match target bitrates (closest match)

Packet Loss

At WAN emulation router

Random packet loss

Packet loss ratios 0%, 1%, 3% and 5%

One NAL unit per RTP packet

NAL unit loss rate = RTP packet loss rate

Decoder

HM 8

Designed for conforming bitstreams

Some problems when random NAL unit loss encountered

Basic error concealment – frame copy or co-located block copy

Impairments are:	
1	5, Imperceptible
	4, Perceptible, but not annoying
Ť	3, Slightly annoying
	2, Annoying
	1, Very annoying
Your choice: 3	

□ Racehorse sequence at 416*240

□ No packet loss – 9.17

□ 8.86 at 1% dropping to 5.3 at 5%

□ Variability increases with packet loss

□ From 3% loss most found annoying

Variability increases with loss

PSNR does not track MOS accurately

VQM trend slightly better than PSNR

8.86 at 1% dropping to 5.3 at 5%

QoE-Driven HEVC Streaming

User-centric video stream adaptation scheme

Client side quality assessment engine

More Details in Publications

Book chapters

"Mobile Video Cloud Networks", in Mobile Networks and Cloud Computing Convergence for Progressive Services and Applications (ISBN13: 9781466647817), IGI Global, USA, Nov. 2013.

Journals

- "HEVStream: A framework for streaming and evaluation of high efficiency video coding (HEVC) content in loss-prone networks," *IEEE Transactions on Consumer Electronics*, Vol. 58, No. 2, pp. 404-412, May 2012.
- "Performance evaluation of concurrent multipath video streaming", International Journal of Digital Multimedia Broadcasting (Hindawi), Vol. 2013, 20 pages, July 2013.

Conference papers

- "Priority based methods for reducing the impact of packet loss on HEVC encoded video streams", Proc. IS&T/SPIE Real Time Imaging 2013, (Invited Paper), San Francisco, USA, Feb. 2013.
- "Scalable HEVC (SHVC)- based video stream adaptation in wireless networks", Proc. IEEE Personal Mobile and Indoor Radio Conference (PMIRC 2013), London, UK, Sept. 2013.
- "Subjective evaluation of the effects of packet loss on HEVC encoded video streams", Proc. IEEE International Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany, Sept. 2013.
- "The impact of network impairment on quality of experience (QoE) in H.265/HEVC video streaming", Proc. IET International Conference on Wireless, Mobile and Multimedia (ICWMMN 2013), Beijing, China, Nov. 2013.
- "Evaluation of the emerging scalable high efficiency video coding (SHVC) standard for video stream adaptation in lossy mobile networks," *Proc. IS&T/SPIE Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2014,* San Francisco, USA, Feb. 2014.